Resumen

Para el caso $\xi<1.00$:

$$ w_D= \sqrt{1-\xi^2} $$

$$ x_{(t)}=e^{-\xi.w_n.t}\times \left[x_o.\cos(w_D.t)+\left(\frac{\dot{x}_o+ x_o.\xi.w_n}{w_D} \right).\sin(w_D.t) \right] $$

Para el caso $\xi>1.00$

$$ x_{(t)}=\frac{e^{-\xi.w_n.t}}{2.w_n.\sqrt{\xi^2-1}}\times \left[ e^{\sqrt{\xi^2-1}.w_n.t}\times(x_o.w_n.(\xi-\sqrt{\xi^2-1})+\dot{x}_o)+e^{-\sqrt{\xi^2-1}.w_n.t}\times(-x_o.w_n.(\xi-\sqrt{\xi^2-1})-\dot{x}_o) \right] $$

Para el caso $\xi=1.00$

$$ x_{(t)}=e^{-w_n.t}\times[x_o+(\dot{x}_o+x_o.w_n).t] $$


Untitled

Untitled

Untitled

Untitled

Untitled

Untitled

Untitled

Untitled

Untitled